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Visualization of the Road to Chaos
for Finance and Economics Majors

Efforts to simulate turbulence in the financial markets include experiments
with the logistic equation: x(t) = kx(t - 1)[1 - x(t - 1)], with 0 < x(t) < 1
and 0 �d k < 4. Visual investigation of the logistic equation shows the various
stability and instability regimes for the various values of the Feigenbaum
number k. Visualizations for t = 20 observations provide clear demonstrations of
the stability regimes. The author algebraically analyzes all these regimes in more
detail. For 0 < k < 3, the process settles to a unique stable equilibrium. For
3 �d k < 3.6, the process bifurcates, or, as colored visualization shows but not
black-and-white, its pitchfork bifurcation branches “bang-bang” switch
between two regimes. For 3.6 �dk =< 4, the process becomes chaotic, i.e.,
deterministically random. In this regime are windows of stability, e.g., at

k = 3 + 2  = 3.8284. At k = 4, pure chaos, the process is extremely sensitive
to initial values, which is clearly demonstrated visually. The author increases
the number of observations to t = 1000, and computes the homogeneous Hurst
exponent of the process at k = 4: H = 0.004, indicating that x(t) is blue noise,
i.e., extremely antipersistent. A histogram shows a highly platykurtic distribution
of x(t), with an imploded “mode”, with extremely fat tails higher than the “mode”,
against the reflecting values at x = 0 and x = 1. Several plots of the state
directory of the system in the (x(t), x(t - l)) space trace out the parabolic strange
attractor. Although the strange attractor is a well-defined parabole, the points
on the attractor set are deterministically random and unpredictable.

© 2006 IUP. All Rights Reserved.

Cornelis A Los*

* Professor of Finance and Accounting, Kazakh-British Technical University, International School of Economics
and Social Siences (ISE), Almaty, Kazakhstan. E-mail: c.los@kbtu.kz and call49@columbia.edu

Introduction

“Chaos theory”, a modern development in mathematics and science, provides a framework
for understanding irregular or turbulent fluctuations. Chaotic systems are found in many
fields of science and engineering (Hall, 1991). The study of their dynamics is an essential
part of the burgeoning science of complexity. Science of complexity researches the
behavior of nonlinear dynamic processes, and has now reached to finance and economics
(Savit, 1988), particularly in the form of a search for chaos in the financial markets after
the stock market crash of October 19, 1987 (Hsieh, 1991, 1993; Patterson, 1993). The
assessment by these analysts was clearly misdirected, since the stock market crash of
October 19, 1987 was a discontinuity occurring in a persistent financial market,
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i.e., an example of market failure or inefficiency. Turbulence is a phenomenon that can
only occur in antipersistent financial markets, i.e., in hyper-efficient markets like Foreign
Exchange (FX) markets.

Historically, finance and economics have been cast in terms of linearized Newtonian
physics. However, many phenomena in finance and economics are complex, nonlinear,
self-organizing, adaptive, and feedback processes. Financial turbulence is conjectured to be
a process to minimize friction between cash flows with different degrees of liquidity, with
different investment horizons or with different trading speeds (Peters, 1994). Understanding
these nonlinear processes is of importance to portfolio management, dynamic asset valuation,
derivative pricing, hedging, trading strategies, asset allocation, risk management and the
development of market neutral strategies.

Nonlinear dynamic processes are not new to financial economists. Mandelbrot (1963) found
that speculative market prices followed a fractal differentiation process. More than 35 years later
and using a different technology, Lo and MacKinlay (1999) come to the same conclusion.
Moreover, nonlinear market dynamics had already been detected in high-frequency, intraday
trading data by Müller, Dacorogna et al. (1990), and was recently confirmed with different data
sets and different analytic techniques by Karuppiah and Los (2000).

Why should the study of nonlinear dynamic systems be of interest to financial economics?
Because it offers a differentiated perspective on predictability in the financial markets.
Financial processes can be differentiated according to their predictability. For example,
Peters (1999, p. 164) discerns four cases of predictability (Table 1).

While deterministic linear
dynamic systems show high
predictability, both in the
short- and long-term,
deterministic nonlinear
dynamic systems show high

predictability in the short-term, but low predictability in the long-term. Stochastic nonlinear
systems, in general, show low predictability, both in the short- and the long-term. In contrast,
complex systems show low short-term, but high long-term predictability.

The current financial-economic models of market pricing processes are often linear or
linearized, but such models cannot differentiate between the various degrees of short- and
long-term predictability. Linear models have high predictability both in the short- and
long-term. In order to identify financial-economic models that differentiate between the
short- and long-term predictability of pricing processes, one needs to introduce nonlinearity
or complexity.

The particular research question of concern motivating this author is: since we find that
financial market pricing processes are nonlinear, do they have high short-term and low
long-term predictability, or are they complex, with low short-term, but high long-term
predictability? For example, stock market pricing processes appear to have some short-term
predictability, or persistence,1 which is exploited by technical traders, but they are often

Table 1: Levels Of Predictability

Shor t-ter m

High Nonlinear Dynamic Linear Dynamic

Low Nonlinear Stochastic Dynamic Complex Dynamic

L ong-ter m Low High

1 Measured by Hurst exponents in the order of 0.6 - 0.7.
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unpredictable in the longer-term, to the dismay of fundamental traders and investors
(Savit, 1988). In addition, stock market return series show severe discontinuities, like the US
stock market crises in 1929 and 1987, attesting to their persistence.

On the other hand, FX pricing processes are unpredictable, or anti-persistent,2 in the
short-term, but they tend to show some global predictability in the longer-term. For example,
they appear to be rather resilient to exogenous shocks, like the Thai baht break 1997, or any
other drastic revaluation. FX processes do not often show sharp discontinuities. In fact, the
Thai baht break was exceptional and was probably caused by malfunctioning fundamental
asset markets, e.g., of bank loans, in the Southeast Asian region. But they show intermittency:
periods of stability and persistence are interrupted by periods of chaos.

In this paper, we simulate and analyze the properties of a particular complex nonlinear process
in an effort to understand these various predictability regimes. We run simulation experiments with
the logistic parabola. In particular, we observe four types of behavioral regimes generated by this
model, depending on the value of its scaling parameter: (1) regimes of unique dynamic equilibria;
(2) regimes of complex multiple dynamic equilibria; (3) regimes of intermittency, i.e., a mixture
of multiple dynamic equilibria and chaos; and (4) complete chaos.

Visualization of the distributions of intermittency and of complete chaos, i.e., of
nonstochastic, deterministically random behavior, and particularly the visualization of the
chaotic attractor, produces several jarring surprises for conventional (probability and linearity
based) statistics. Such experiments with the simple logistic parabola also convincingly
demonstrate that complex behavior does not necessitate complex laws. Very simple nonlinear
laws can produce very complex and unpredictable behavior.

Logistic Parabola

Let’s start with the simple definition of a logistic dynamic process, where x(t) may be the
increments of a market price of a security (bond) or of an FX rate. The logistic parabola has been
used to model restrained growth processes and has been applied in many fields, in particular
in ecology and socioeconomics. We simulate, visualize and analyze its most salient features, in
particular, its self-similarities generated by nonlinear iteration. We also compute Hurst exponents
of its various stability regimes using wavelet multiresolution analysis.3 We look at its stable and
unstable regimes, the deterministic chaos it can produce, its bifurcation and phase shifting
phenomena, its intermittency and the frequency distribution of chaos.

Definition 1:  The logistic parabola is the following nonlinear differential equation:

x (t) = f( x )

= kx(t - 1) [1 - x(t - 1)]

= kx(t - 1) - k [x(t - I)]2 , with 0 �d x(t) < 1 and 0 �d k �d 4  ...(1)

where k is a real number, for physical reasons.

2 Measured by Hurst exponents in the order of 0.25 - 0.5.
3 The simulations with the logistic parabola were executed in a Microsoft�£Excel 97 spread-sheet, on a Compaq

ARMADA1700 notebook with Intel Pentium II processor. The growth parameter k was varied in steps of 0.1
for t = 1,2,..., 1,100. The Hurst exponents based on wavelet multiresolutuion analysis of level 3 of the
simulated data using the software Benoit, Version 1.2, of TruSoft Int’l Inc. 1997, 1999.

x



T h e  IUP Jo u r n a l  o f  Financial Economics, Vol. IV, No. 4, 200610

Remark 1: This logistic parabola, or quadratic map, was introduced in 1845 by the
Belgian sociologist and mathematician Pierre-Francois Verhulst (1804-1849) to model the
growth of populations limited by finite resources (Verhulst, 1845). The designation “logistic”,
however, did not come into general use until 1875. It is derived from the French logistique,
referring to the “lodgment” of troops. Interesting details of this logistic process, particularly
about its strange attractor set, can be found in Schroeder (1991). Notice that there is no harm
in assuming that the variable x is suitably scaled so as to lie between zero and one.

The logistic parabola is an extremely simple nonlinear differential equation, which
consists of a linear part, kx(t - 1), and a nonlinear part, - k[x(t - I)] 2. It exhibits stable,
bifurcating, intermittent and completely chaotic process regimes for certain values of the
scaling parameter k, caused by its implied iterative, binomial “folding” process. The process
can swing from stable behavior to intermittent behavior, and then back to chaotic behavior,
by relatively small changes in the value of its single scaling or growth parameter
k (Feigenbaum, 1979). This scaling parameter k governs the transitions between the various
stability regimes of this nonlinear dynamic feedback process.

Stability and Persistence Regimes

These various process regimes are summarized by the Feigenbaum diagram, or “fig tree” plot
in Figure 1, which shows the steady state equilibrium values of x(t) in the observation range
t = 101,..., 200 for various values of the scaling parameter k, which is the sole control
parameter of the logistic process.

Figure 2 provides the corresponding Hurst exponents, computed from three resolution
levels of wavelet coefficients, indicating the relative persistence of the logistic process for
various values of k. For H = 0.5 the process is white noise or non-persistent; for 0 < H < 0.5
the process is antipersistent; for 0.5 < H < 1 the process is persistent.

Figure 1: Bifurcation Diagram of Logistic Parabola
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Notice in Figure 1 the unique stationary, timeless, homogeneous states of equilibrium for
k < 3, and the apparent multiplicity of equilibrium states after the critical value of k = 3.0.
There is a cascade of supercritical, period-doubling pitchfork bifurcations and phase-shifting
crossovers for 3 < k < 3.6, followed by moderate chaos. The first bifurcation at k = 3.0. But
the coloration in Figure 1 clearly shows that there are crossovers, or 180 degree phase shifts,
in the process paths, signifying the occurrence of bistability along particular paths. The first
crossover occurs at k = 3.34. This is followed by a set of bifurcations at k = 3.45, followed
by a crossover switch at k = 3.50, etc.

In this regime the steady state of x(t) is strictly unpredictable, because it depends on the
initial state value and the precision of the computations (= computation noise), but it can be
characterized by one or the other path. This dependence of the system on different steady state
paths according to past history is called “hysteresis”.4

Notice in Figure 2, that sharp changes in the Hurst exponent do detect the bifurcations.
At k = 3.0 the simple symmetry of the steady state equilibrium is broken. Between k = 3.0
and k = 3.45 the Hurst exponent is homogeneous H = 0.924, indicating great persistence,
because of the resulting bi-stability. At k = 3.45 many more bifurcations appear, and at
k = 3.6 chaos appears. The Hurst exponent drops sharply in both cases. Obviously, the Hurst
exponent, which measures the relative persistence of a process, does not detect the phase
shifts in the process at k = 3.34 and k = 3.50.

Chaos, which is unpredictable deterministic evolutionary behavior, appears in the range
3.6 < k < 4. Here the sharp classical distinction between chance and necessity, between
stochastic and deterministic behavior is blurred and we witness the emergence of complexity.
It appears that, in this particular range of k, there exist deterministic randomness. In this range

4 The stability of differential maps which map the unit interval into itself is discussed in greater detail in Singer
(1978).

Figure 2: Hurst Exponents of Logistic Process x
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the Hurst exponent is heterogeneous, indicating the multi-fractality of the logistic process.
Between k = 3.6 and k = 3.74, 0 < H < 0.3 and the process is very antipersistent. Then, at
k = 3.74, the process is suddenly very persistent, but immediately thereafter, between k = 3.74
and k = 3.83, 0.3 < H < 0.6, the process is only moderately anti-persistent. This moderate
persistence is similar to what is observed in the FX markets.

In particular, this moderate chaos regime is interleaved at certain values of k with periodic
“windows” of relative calm. The most prominent being the 3-period window starting at

k = 221 � � = 3.83. Once the period length 3 has been observed, all possible periods and

frequencies appear and complete deterministic chaos results (Li and Yorke, 1975).
Interestingly, after k = 3.83, 0.6 < H < 0.9, chaos has become, counter-intuitively, persistent,
because of the emergence of “structure,” and “self-organization.” However, on very close
detailed observation, within the 3-period window period-doubling reappear, leading to stable
orbits of period length 3 �u2 = 6, 3 �u22 = 12, 3 �u23 = 24, etc., and renewed chaos, in which
another 3-period window is embedded, and so on, ad infinitum into other self-similar cascades
of orbits of period length 3.2n. This is the process regime of turbulence. The cascades of orbits
form one-dimensional “eddies”.5

We’ll now discuss each of the four regimes of evolutionary behavior of the logistic
parabolic process in a cursory fashion at low values of t to see how quickly the process
stabilizes. Notice the changes in the behavior of x (t), by looking at its first 20 iterations,
t = 1,..., 20, for various values of the scaling parameter k, starting at x(0) = 0.1 (Figure 3).6

5 For more images of critical points of nonlinear dynamical mappings, see Jensen and Myer (1985).
6 Notice that the Excel spreadsheet plotter has a problem with sharp discontinuities at the bottom of the chaotic,

k = 4.0 process. Excel’s spline smoother curves the line below x(t) = 0, although the process x(t)�t 0, always.

Figure 3: Convergence and Per iod-Doubling
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When k = 1.5, x(t) reaches its steady state of x* = 
3

1  at about t = 8. When k = 2.0,

x(t) reaches its steady state of x* = 
2

1  at about t = 4. In these regimes of unique uniform steady

states (which are also asymptotically stable), the system ignores time. Once it has reached a
steady state, it does not matter where we are in time: the value of the system remains one and
the same for each t. These regimes thus uniquely Newtonian and stationary. But for k = 3.2,
the system produces oscillations between two steady states. First, it appears to settle in a
periodic rhythm by about t = 16. Now the system is clearly time dependent: it differs in value
depending on the phase of the periodicity. For about k = 3.5, there appear to be two different
periodicities superimposed on each other and thus oscillations between four different steady
states. For k = 4, any specific periodicity has completely vanished, although there are still
nonperiodic cyclical oscillations.

The Hurst exponent, which ranges between 0 and 1, computed for these first 20
observations, is H �t 0.664 > 0.5 for k = 1.5, 2.0, 3.2, and 3.5, indicates that these particular
logistic processes are persistent or pink, i.e., between white and brown noise. But H = 0.07
< 0.5 for k = 4.0, indicating that this chaotic process is initially antipersistent.

The completely chaotic process at k = 4.0 is very unstable: the logistic process is extremely
sensitive to the initial condition, i.e., to the starting point of the process x(0). Small changes
in the initial condition lead to large amplifications of the effects of these changes.
In Figure 4, we show two paths for x(t) for when z(0) = 0.100000 and when x(0) = 0.100001,
with a small change in the sixth position after the decimal point.

Notice that until the two process traces split, they are exactly the same: their maxima and
minima follow in exactly the same order at the same time. But at the end, the temporal
symmetry of the steady state solutions is broken: the equilibrium has become time dependent.

Figure 4: Sensitivity to x(0)

-0.2

0

0.2

0.4

0.6

0.8

1.2

1.0

X
(t)

0        5    10       15      20      25

Iteration #

k=4.0, x(0)=0.100000

k=4.0, x(0)=0.100001



T h e  IUP Jo u r n a l  o f  Financial Economics, Vol. IV, No. 4, 200614

Meteorological processes are often considered to show regime changes from stable to chaotic.
An even simpler example of such a regime change is cigarette smoke. When it arises from a
cigarette, the smoke is first a smooth stable laminar flow, until it rather suddenly becomes a
chaotic “whirl.”

We will now discuss the four regimes in more detail, visualize them and algebraically
analyze when and why they occur.

Steady State Solutions

Since we observed that the logistic process stabilizes rather quickly to its steady states, in the
following only its equilibria are analyzed, which are dependent on the scaling parameter k.
For values of k < 3.0, the logistic process settles to a unique static equilibrium are:

Definition 2: The static equilibrium or steady state solution is reached when

x(t) = x(t - 1) = x*, a constant  ...(2)

Example 1: For the 1-orbit, from solving the not iterated logistic equation,

*
x)

*
x(k

*
kx)

*
x(

*
xk � ��� ��

2
1  ...(3)

for a nontrivial solution

k

k*
x 

1��
� ...(4)

The slope of the logistic parabola is

)]([
)(

)( 
1t2x1k

1tx
tx 

����� 
���w

�w
...(5)

which equals k for x(t - 1) = 0 and 2 - k for the unique steady state solution 
k

k*
x 

1��
� .7 This

dynamic equilibrium is stable as long as the slope of the logistic parabola

11)]2x(tk[1
1tx

tx 
������� 

���w
�w

)(
)(

...(6)

Thus the single point x(t - 1) = x* = 0 is stable for 0 �d k < 1 and marginally stable for
k = 1, but it is unstable for 1 < k.

The second steady state solution 
k

k*
x 

1��
�  exists and is stable for 1 < k < 3, because then

1
1 

��
���w

�w

)t(x

)t(x
...(7)

7 This is a familiar result for economists who have studied Solow’s one-period delayed stable market pricing
spiral, or dynamic cobweb model, towards a unique equilibrium.
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For example when k = 1.5, x* = 
3

1
, and 

)t(x

)t(x

1���w

�w
= 0.5. When k = 2.0, x* = 

2

1
, and

)t(x

)t(x

1���w

�w
= 0. The steady state x* = 

2

1
 is always superstable (with period length 1), and

convergence to this particular state is always very rapid.

However, something happens when k = 3. At k = 3, the steady state is 
3

2
� 

*
x  but the slope

of the logistic parabola is )t(x

)t(x

1���w

�w
=1 and the process no longer converges

(= stably attracted) to x*! This steady state is marginally stable: nearby values of x(t) are not

attracted to nor repelled from x* = 
3

2
.

Self-organization: Period Doubling

At k = 3, two possible steady state solutions x* appear, very closely together, but clearly
separated, between which the process x(t) alternates (Figure 5).8 The process remains very
predictable, since the oscillation between the two stable states is regular. When x(t) is shocked
at this value of k = 3, it still quickly returns to this oscillation sequence. This event for
k = 3 is called a (Myrberg) bifurcation or period doubling.

8 Figure 5 and the following Figures portray x(t) for t = 901 - 1000, after the process has completely stabilized.

Figure 5: Two Stable Equilibria (k-3)

Let’s first analyze the regime with two steady state equilibria. An cyclical trajectory, or
orbit, having a period length of P = 2, or 2-orbit, is the steady state solution x*, which satisfies
the 1 �u iterated logistic equation:

*x)]}*x(1*kx[1)*x(1*k{kxf(f(x)) � �������  ...(8)
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The value of k for the superstable steady state solutions x* = 0.5 is obtained from solving
the once-iterated logistic equation

5050150150150 .)] }.(k.[).(k.{k � ����� � ...(9)

or

08
2

4
3 

� ���� kk          ...(10)

which has three solutions for the scaling parameter: k = 2, corresponding to x* = 0.5,

k = 1 + 5  = 3.2361, corresponding to x* = 0.80909, and the inadmissible solution

k = 1 - 5  = -1.2361 < 0. Thus, for k = 2 and k = 1 + 5 , respectively, there are two stable

steady states or frequencies, i.e., two alternating, stable orbits of period length P = 2. 
Accordingly, x(t) takes on the values x(0) = 0.5 �o x(l) = 0.8090 �o x(2) = x(0) = 0.5 �o x(3)
= x(l) = 0.8090, etc. as seen in Figure 6.

9 Solve the once iterated equation (1+ 5 ) { (1 + 5 )x
* (1 - x*) [l - (1 + 5 )x

* (1 - x* )]} = x* for x*.  The

growth parameter k = 1 + 5  = 3.2361 = 
�J

2
, where �J = 0.618...., i.e.,  the golden mean.

Figure 6: Two Stable Equilibr ia (k-3.24)
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parabola will in turn become unstable at precisely one and the same value of k. This is not
a coincidence since, according to the chain rule of differentiation:
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x(0)x(x)]f.[x(0)x(f(x))]f[x(0)x[ f(f(x)]
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...(11)
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so does x(l) at the same vale of k. Thus, both these steady state solutions of the once-iterated
logistic equation f(f(x)) will bifurcate at the same k value, leading to an orbit of period length
P = 2n = 22 = 4. In other words, f(f(f(f(x)))) will have n = 4 steady state solutions or frequencies.
The 4-orbit has four consecutive steady state solutions x*, which satisfies the 3 �u iterated
logistic equation.

f(f(f(f(x*))))=x*                    ...(13)

Again, the value of k = 3.4985 for superstable steady state solutions x* with a 4-orbit is
obtained from solving the 3 �u iterated logistic equation

f(f(f(f(0.5))))=0.5                    ...(14)

Accordingly x(t) produces the superstable orbit of period length 4 of f(x): x(0) = 0.5 �o x(l)

= 0.875 �o  x(2) = 0.383 �o x(3) = 0.827 �o x(4) = x(0) = 0.5, etc., as seen in Figure 7.

Again, because of the chain rule of differentiation, the four derivatives are the same at all
four points of the orbit. Thus if, for a given value of k, the magnitude of one of the derivatives
exceeds 1, then the magnitude of each of the four will. Hence, all four iterated x(t) will

Figure 7: Four Stable Equilibria (k=3.50)

bifurcate at the same value of k, leading to a cyclical trajectory, or orbit, of period length
P = 2n = 23 = 8, etc.

In summary, the general method for finding the value of the scaling parameter k for which
a superstable orbit with period length P exists, is to solve the equation

f (P)(0.5) = 0.5         ...(15)

exactly for k, where P is the period length of the orbit and f (P) is the (P-1)th iteration of
the steady state logistic parabola

f(x*) = kx*(1-x*)         ...(16)

Self-similarity and Scaling

The period-doubling transformation of the logistic parabola is asymptotically self-similar.
Feigenbaum (1979) proved that it obeys a scaling law with the following scaling factor:
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....
)(x
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n)n( 50292
0

1
2

02 ��� �o
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��
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� �f�o�D � D         ...(17)

where )n(
/Px 2  is the value of the iterate x at the half period 

2

P 
for a superstable orbit of

period length P = 2n, with n = log
2
(P), starting with x(0) = 0.5. This scaling factor is related

to Feigenbaum’s universal constant �G, which appears in the following geometric law of the
scaling parameter k10:

91029...4.66920160�/
(n)k1)(nk

1)(nk(n)k
n�/���Q�� � �o

����

����
� �f� o          ...(18)

Feigenbaum also discusses a simplified theory, which yields the following relationship

between the scaling factor �D of the scaling parameter scaling law and the universal constant �G:

7641
2 

.�|�����| �D�D� G         ...(19)

Spectral Analysis of Periodic Orbits

Let )n(
k

c  be the Fourier coefficient of the x(n)(t) for a period length P = 2n. In going from an orbit

of period length P = 2n by a period-doubling bifurcation to an orbit of period length P = 2n+1,

the new Fourier coefficients with an even index )n(
k

c 
1

2
�� , which describe the harmonics or

periodicities of the regular orbits, are approximately equal to the old Fourier coefficients:

)n(
k

c
)n(

k
c �|

�� 1
2

         ...(20)

because periodicity causes

)t(
)n(

x)t(
)Pn(

x �|
� �         ...(21)

The odd-indexed Fourier coefficients )n(
k

c 
1
12

��
��

, which describe the subharmonics appearing

in the spectrum as a result of period doubling, are determined by the difference

(t)(n)x(t)P)(nx ���� ...(22)

It can be shown (Feigenbaum, 1979) that the squared magnitudes, or power ratios, of these

odd-indexed Fourier coefficients, 
21

12
)n(

kc ��
�� , are roughly equal to an adjacent component from

the previous orbit scaled down by a factor of

10 This Feigenbaum constant �G was originally found by Grossman and Thomae (1977).
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corresponding to
10 log10 43.217=16.357dB�| 16dB         ...(24)

where dB=decibels.11 When the scaling parameter k is increased, more and more
subharmonics appear until deterministic chaos or noise is reached, as we will see in the
following sections.

Intermittency and Chaos

The bifurcation scenario repeats itself as k is increased, yielding orbits of period length 32,
64, etc., ad infinitum, until at about k = 3.6, this dynamic process appears to become unstable.
The process ends up in an undefined orbit of infinite period length, of which Figure 8 gives
only a sample “window” of 100 observations.

Figure 8: Unstable Equilibria (k=3.60)

The cyclical trajectory or orbit is now aperiodic, comprising a strange point set of infinitely
many values of x(t) that never precisely repeat, although there is cyclicity. The approximate
self-similarity of this point set shows Feigenbaum’s self-similarity scaling factor of about

�D = -2.5029. The Hausdorff dimension D = 0.538...of this point set, which is a Cantor set, was
derived analytically and numerically by Grassberger (1981). A good approximation is:

5250

52

1
.

.
log

log
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�J

         ...(25)

where the golden mean
2

15 ��
� �J  = 0.61803....Thus this trace is almost half way in

between a line (D = 1) and a set of points (D = 0), with a slight balance in favor of a line.

11 The number of decibels is, by definition, 101og
10

 of a squared magnitude ratio, such as the spectral power ratio.
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Intermittency: However, within the chaotic region, when 3.6 �d k < 4.0, some “windows of
stability” do occur in between periods of chaos. This alternation of stability and chaos when k
is increased is called intermittency. For example, for k = 3.82, we have moderate chaos (Figure 9).

Figure 9: Moderate Chaos (k=3.82)

But then, stability appears to reappear at k = l+ P  = l+ 32  = 1+2 2  = 3.83. There is

the so-called “tangent bifurcation” at this value k = 3.83 (Figure 10). This is also indicated 
by the Hurst exponent in Figure 2. It looks as if for k = 3.83, there are only two stable
equilibria x* = 0.154 and x* = 0.958, but the process x(t) passes through the nonattracting,
marginally stable equilibrium x* = 0.5.

Figure 10: Three Stable Equilibr ia (k = 3.83)

Just above k = 3.83, the thrice-iterated logistic parabola acquires six additional steady state

points x*: three with an absolute slope 1
1

3
�!

���w

�w

)t(x

))t(x()(f
which belong to the unstable orbit of

0
0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1.0

Number of Observations

x
(t
)

0
0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of Observations

x
(t
)



21Visualization of the Road to Chaos for Finance and Economics Majors

period length 3, and three with a slope 1
1

3
�!

���w

�w

)t(x

))t(x()(f
, which are the three points belonging

to the stable orbit with period length 3 and the apparent periodicity breaks down
(Figures 11 and 12).

Figure 12: Intermittency (k=3.86)

Figure 11: Three Stable + Three Unstable Equillbria (k=3.85)

Thus we encounter the famous period-3 orbit, an orbit with three distinct frequencies,
which guarantees that all other period lengths or frequencies exist, albeit as unstable orbits,
at the same parameter value.12 In other words, the twice-iterated process.

f(f(f(x*)=x*          ...(26)

has a 3-orbit with three consecutive steady state solutions x*, which satisfies the 2x iterated
logistic parabola:

12 In 1971 a Belgian physicist, David Ruelle, and a Dutch mathematician, Floris Takens, together predicted that the transition
to chaotic turbulence in a moving fluid would take place at a well-defined critical value of the fluid’s velocity. They predicted
that this transition to turbulence would occur after the system had developed oscillations with at least three distinct
frequencies. Experiments with rotating fluid flows conducted by American physicists Jerry Gollub and Harry Swinney in the
mid-1970s supported these predictions.
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which has seven exact solutions, three of which are real and four of which are conjugate
complex. Numerically, these solutions are:13

k = 2, which corresponds with the superstable equilibrium x* = 0.5.

k = 3. 832, which corresponds with the equilibria x* = 0 (marginally stable), x* = 0.154
(stable), x* = .0.165 (unstable), x* = 0.499 (stable), x* = 0.529 (unstable), x* = 0.739 (stable),
x* = 0.955 (unstable), x* = 0. 958. 

k = -1.832, which is inadmissible, because 0 �d k.

k = 2.553 +.959i and 2.553 -.959i, which are inadmissible, because k is real.

k = -.553 +.959i and -.553 -.959i, which are inadmissible, because k is real.

The eight equilibria corresponding to k = 3.832 are found from the equation:

01832311832383231

183231832383238323
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..(29)

After period length 3 has appeared at k = 3. 83, orbits of any period length are possible. As
Li and Yorke (1975) state “period three implies chaos.” Finally, at k = 4.0 we encounter complete
chaos (Figure 13). Chaos is the coexistence of an infinite number of unstable deterministic orbits.

Figure 13: Complete Chaos (k=4.0)

13 Obtained with Maple symbolic algebra software in Scientific Workplace, Version 3.0.
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Universal Order of Period Lengths

The reason for the appearance of any period length, or frequency, after period length 3 is that the
different period lengths P of stable periodic orbits of uni-modal maps, like the logistic parabola,
do not appear randomly. In fact they appear in a universal order, as proved by Sharkovskii (1964):

If k
p
 is the value of the scaling parameter k at which a stable period of length P first

appears, as k is increased, then k
p
 > K

q
 tfp� q(read: p precedes q) in the following Sharkovskii

order:

12
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22
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               ...(30)

Example 2: The minimal k value for an orbit with p = 10 = 2-5 is larger than the minimal
k value for p = 12 = 22 • 3 because period length 10 � 12.

Remark 2: (1) Thus the existence of period length p = 3 guarantees the existence of any
other period length q for some k

q
 < kp; (2) if only a finite number of period lengths occur,

their length must be powers of 2; and (3) if a period length p exists that is not a power of
2, then there are infinitely many different periods.

Interestingly, the intervals of k for the stable orbits are dense. That implies that the
parameter values for which no stable periodic orbits exist form no intervals. Nevertheless, they
have a positive Lebesgue measure. This means that a random choice of the scaling parameter
k has a nonvanishing probability of leading to an aperiodic orbit. These aperiodic orbits are
thus not “unlikely.” They have a particular probability of occurrence, although that
probability may be very small.

Complete Chaos

With k = 4, the process has become completely chaotic. In Figure 14 we look at the ultimate
chaotic pattern of the logistic x(t) for k = 4.0 and t = 101,..., 1100. The Hurst exponent
H = 0.58, indicating that this logistic chaos exhibits some persistence and is not completely

white. No random number generator is used! The deterministic logistic parabola generates
these 1000 values of x(t), after the first 100 values were discarded, starting from a;(0) = 0. The
process x(t) has a bounded range: 0 < x(t) < 1, but its mean is undefined, as is its variance,
no matter how many observations generated. Ergo, the logistic chaos process is completely
non-stationary or unstable. When more observations are generated, the mean and variance will
continue to change. There is no convergence to a unique steady state equilibrium or to a few
steady state equilibria. There are infinitely many!

Figure 15 is the same as Figure 14, but this time the dots representing the steady states
are connected. This noise is a bit more persistent, i.e., moves a bit slower, than white noise:
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Figure 16: Frequency of x(t) Logistic Chaos (k=4; H=0.58; 1000 Obs.)
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Figure 14: Logistic Chaos (k=4; H=0.58); 1000 Obs.) is Not White Noise
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Figure 15: Logistic Chaos (k=4; H=0.58; 1000 Obs.)
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0 < H = 0.58 > 0.5. The fractal dimension of this continuous fractal (non-differentiable)
space-filling line is: D = 2 — H = 1.42

Figure 16 shows the frequency distribution of chaos formed by computing a histogram
with 10% equally spaced bins. This frequency distribution of the 1,000 values of the
constrained x(t), 0 < x(t) < 1, is not flat, as would be the case with uniformly distributed white
noise. It is highly platykurtic, with a kurtosis 04 = -1.48 (or normalized kurtosis
= 3 - 1.48 = 1.52), compared with that of the Gaussian distribution’s kurtosis 04 = 0
(or normalized kurtosis = 3). It has an imploded mode and very fat tails against x = 0 and
x = 1 that are considerably heavier than the mode. It is an example of a stable distribution

with a (Zolotarev) stability exponent: 
5830

11

.Hz
� � �D  = 1.715. This very heavy tailed

distribution jarringly contrasts with the conventional bell-shaped, unimodal, thin-tailed
Gaussian distribution, with which most statisticians are familiar.

Nonlinear Dynamics

Many of the properties of the logistic parabola are paradigmatic, not only for other unimodal
maps, but for different nonlinear maps as well. These maps model a broad range of
contemporary problems in which nonlinearities play an essential role (Lyubitch, 2000). In
order to better understand the concept of chaotic behavior of a financial system’s evolutionary process,
we must first generalize our definition of a dynamic system to include such nonlinear dynamic systems.

Definition 3:   A dynamic system is described by its state at time t, which is a vector point
x(t) in a Euclidean phase space R.E, with (integer) dimension E, and its evolution between time
t and time t + �' t is determined by certain invariant rules. Each point in phase space can be
taken as the initial state x(0), and is followed by a trajectory x(t) for all t > 0.

Figure 17 shows the remarkable state space trajectory for the state vector (x(t), x(t — 1))
of the chaotic logistic process.

None of these trajectory cycles or orbits overlap (even under a microscope). How was this
trajectory of 1,000 iterations, generated? Let’s follow the first 10 iterations in Figures 18 and 19.

This is a clear example of Mandelbrot’s non-periodic cyclicity (= orbits of different
length). Figures 20 and 21 show the first 20 iterations. Followed by 50 iterations in Figures
22 and 23.

Figures 24 and 25 show the first 90 iterations. Notice how these points in state space lie
precisely on a well-defined object, a parabolic curve, but the position of each these state
points is completely irregular or unpredictable and no point is ever visited twice. Their
positions depend on the precision of numerical computation of the logistic evolutionary
trajectory, which depends on the length of the digital registers of the computer. A computer
with a different computing precision, delivers a different series of points, as can be easily
demonstrated. This is an example of deterministic, non-probabilistic randomness.

Fractal Attractor

What is the character of the chaotic logistic parabola as a process? To discuss this properly
we need a new concept that is particular to nonlinear dynamic systems: the attractor.
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Figure 17: State Trajectory of Chaotic Logistic Process (k=4)
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Figure 20
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Figure 23
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Definition 4: A dynamic process is said to have an attractor, if there exists a proper subset
A of the phase space RE, such that for almost all starting points x(0), and t large enough, x(t)
is dose to some point of A.

In other words, the attractor set A is the subset of the Euclidean phase space with infinitely
many equilibrium states x(t) of the system and their limiting points. The attractor characterizes
the long-term behavior of the process. The well-defined parabolic object in state space in
Figure 26, which defines the non-periodic cycles, is its attractor. Notice that this chaotic

process is not an anarchic process, since it clearly has macroscopic structure. It is complex
in the sense that it combines the global stability of the (logistic) parabola with the local
uncertainty of where the process at any time is on the parabola.

This subset of steady state points is a Cantor-like set, with a Haussdorff dimension close
to (but not exactly equal to) zero. The attractor is the set of all these deterministically random
equilibria of x(t). The limited dimension D of an attractor A is almost always fractional
(= non-integer) and one speaks of fractal attractors (‘also called strange or chaotic attractors).
Fractal attractors are non-periodic, but cyclic! Their state trajectories in phase space never
intersect, although these trajectories wander about the whole attractor set. Thus fractal
attractors are sets with infinitely many dynamic equilibria.14

Remark 3: Fractal attractors are called strange, because familiar attractors have one of
three distint forms. They consist either of single points (fixed or steady state points), finitely
many points (periodic orbits), or continuous manifolds that give rise to periodic or aperiodic
orbits. However, strange attractors do have structure and thus contain information, although
this information is incomplete. Often they are self-similar or approximately so and they have
fractal Hausdorff dimensions. Often we can identify the complete abstract set from the fractal
attractor, as in the case of the logistic parabola.

14 In classical financial-economics, equilibria are commonly static. Dynamaic equilibria have just started to appear in the
financial-economic literature, although they were already familiar to mathematical economics in the 1970s.

Figure 26: Fractal Attractor of Chaotic Logistic Process (k=4)
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Remark 4: The behavior of fractal attractors can be approximately described by wave
functions, i.e., linear expansions of wavelets. This is currently a hot area of research: the
modeling of (financial) turbulence by using wavelet multiresolution theory.

Chaotic Processes

We can now define chaotic behavior of a nonlinear dynamic process in terms of its attractor.

Definition 5:  A chaotic process is one of which the behavior shows sensitivity to initial

conditions x(0), so that no point of the attractor set A is visited twice in finite time.

Thus, any uncertainty in the initial state of the given system, no matter how small, will

lead to rapidly growing errors in any effort to predict the future behavior of x(£).

Meteorologists faces such problems with the prediction of the weather.15 The plight of

financial economists is, of course, similar (Los, 1991). Indeed, the transition from stable,

equilibrium, behavior to chaotic behavior when the scaling parameter k is increased, as

exhibited by the logistic parabola, has been observed in many physical systems, in fields as

diverse as meteorology, seismology, ecology, epidemiology, medicine, economics and finance,

to name just a few.16 In particular, intermittency of turbulence, where some regions are marked

by very high dissipation or chaos, while other regions seem by contrast nearly free of

dissipation, is symptomatic of the observed behavior of FX markets, both in time and spatially.

In the second half of 1997, the Southeast Asian markets saw a rapid succession of periods of

turbulence and temporary stability. At the same time, while the Southeast Asian FX markets

exhibited this temporal intermittency in the second half of 1997, the Japanese Yen and

Deutschemark markets were completely unperturbed.

Conclusion

In this paper, we have studied the behavior of a nonlinear dynamic system by simulation in
preparation of the quantitative study of FX market processes. The logistic parabola is capable
of producing different process regimes, depending on the value of its scaling parameter k.
These regimes are summarized in Table 2.

For the lower values of k < 3, the logistic process is like a stable linearized Newtonian

process with a single stable equilibrium. Thus it is completely predictable in the short- and

the long-term, or locally and globally. For k = 4.0 the logistic process is completely chaotic,

i.e., it is unstable in both the short- and the long-term, or locally and globally unstable.

15 Indeed, the modern study of chaotic dynamics began in 1963, when the American meteo-rologist Edward
Lorenz demonstrated that a simple, deterministic model of thermal convection - in the Earth’s atmosphere
showed sensitivity to initial conditions or, in current terms, that it was a chaotic process.

16 The term chaotic dynamics refers to the evolution of a process in time. Chaotic processes, however, also often
display spatial disorder - for example, in complicated fluid flows. Incorpo-rating spatial patterns into theories
of chaotic dynamics is now a very an active area of study. Researchers hope to extend theories of chaos to the
realm of fully developed physical turbu-lence, where complete disorder exists in both space and time. This
effort is widely viewed as among the greatest challenges of modern physics. The equivalence in financial
economics would be to find a complete chaotic-dynamic theory of multiple coexisting market pricing
processes, which can explain financial crises occurring in several interlinked regional pricing markets (Cf.
Dechert, 1996).
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Parameter Periodic, Orbital Equilibria Stability

0 �d K< 1 x* =0 Stable

k = l x;* =0 Marginally Stable

1<k <3 x* 

k

k 1��
Superstable (1-period)

k = 3 x* = 
3

2
�o  x* = �•��

3

2
 (�• very small) �o x* = 

3

2
, etc First Bifurcation (2-period)

3 < K < 3.58 x*(l) �o x*(2) �o  ... �o x*(n + 1) = x*(l) Multiple Stability (n-period)

K = 3.34 First 180 Degree Phase hift

K = 3.45 x*(l) �o x* (2) �o x* (3) �o x* (4) �o x*(l),efc Second bifurcation (4-period)

K = 3.50 Second 180-degree phase

shift

K = 3.58 x*(l) �o x* (2) �o  ... �o x*(large) Moderate chaos

3.58 < K < 4 Complexity

K = 3.82 x*(l) �o x* (2) �o  ... �o x*(large) Moderate chaos

K = 3.83 x*(l) �o x* (2) �o x* (3) �o x*(l),efc Apparent stability (3-period)

K = 3.86 x*(l) �o  ... �o x* (3) �o x*(l) & x*(l) �o  ... �o x*(large) Intermittency

K = 4.0 x*(l) �o x*(2) �o ... �o x*( �f ) complete chaos

Table 2: Equilibria Regime of the Logostic Process

A small change in the initial condition will cause it to move to a completely different level

at an unpredictable time.

The most interesting process regimes from the point of view of current research into

FX market processes, are the logistic processes that lie in between these two extreme regimes.

These processes are complex and highly structured, like the period-doubling bifurcation

processes, when 3 < k < 3.83, which oscillate between even numbers of stable equilibria, i.e.,

with different but even period lengths. They can become very complex when the number of

stable equilibria increases and they can show moderate chaos, but with intermittency. Periods

of stability interlaced by periods of moderate chaos, or vice versa. Intermittency processes

contain processes that are stable in the short-term or locally, and unstable in the long-term

or globally, and processes that are unstable in the short-term, or locally, and stability in the

long-term or globally.

Such complex processes are prevalent in nature because they survive. They always operate

in high states of uncertainty. This is the same with FX markets. This uncertainty cannot be

eliminated, because the buying and selling actions of the individual market participants

cannot be predicted. But lack of local or short-term predictability may give such free pricing

systems their global or long-term stability.

We saw that intermittency process regimes are very finely balanced. There are small ranges
of the scaling parameter k, where the logistic process is in a period of calm and stability, but
when the parameter moves outside these windows of stability ranges, the process is plunged
into moderate chaos. This should provide cause for extreme caution for tinkering with
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well-working FX markets, which show intermittency, i.e., fairly long periods of relative

stability, interrupted by fairly short periods of chaos. Institutional policy changes, which

change parameter regimes, can cause a stable market mechanism to move into moderate chaos.

On the other hand, it can also be rescued from such chaos, by counteracting policy changes.

This does not mean that one should eliminate the uncertain pricing processes. But it does

mean that we must first understand the actual quantitative parametrization of these processes

before we start to tinker! It is clear that the current level of understanding of market pricing

systems, which still relies on linearized models borrowed from Newtonian physics, is

insufficient, because actual market pricing process are not both short- and long-term

predictable. They show heterogeneous levels of predictability. The logistic parabola is just

a simple analogue simulation model, but it provides some clear guidelines. However, more

empirical research is required for the identification of the proper nonlinear dynamic

configuration and parametrization of actual financial market pricing.
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