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Introduction
Research on emerging capital markets has been the focus of academic research as the

restrictions on capital flows are getting relaxed in a phased manner. Indian stock market

emerged as one of the favorite destination of Foreign Institutional Investments (FIIs).

In particular, deregulation and market liberalization measures, rapid development in

communication technology and computerized trading systems, and increasing activities of

multinational corporations have accelerated the growth of Indian capital market, which is

now slowly moving towards global financial integration. From 1999 onwards, Indian firms

are raising capital from the US market by listing themselves in the US exchanges. At present,

12 Indian companies have issued (American Depository Receipts) ADRs and are cross-listed

in the US exchanges and many more companies are planning to cross-list in the near future.

Apart from the underlying economic linkages between US and India, three features motivate

This paper empirically investigates the short-run dynamic linkages between
NSE Nifty in India and NASDAQ Composite in US during the period
1999-2001, using intra-daily data which determine the daytime and
overnight returns. Specifically, the study employs the most popular
MGARCH model, to capture the inter-linkages between NASDAQ and NSE
equity markets and compares performance of MGARCH model with other
models, such as two-stage GARCH model and a simple ARMA-GARCH model,
employed in Kumar and Mukhopadhyay (2002). The paper reports that the
simple ARMA-GARCH model performs better than the more complex
MGARCH model. The volatility spillover effects from NASDAQ Composite
are only significant implying that the conditional volatility of Nifty
overnight returns is imported from US. It also found that on an average the
effect of NASDAQ daytime return volatility shocks on Nifty overnight return
volatility is 9.5% and that of Nifty daytime return is a mere 0.5%.
In out-of-sample forecasts, however, it was found that including the
information revealed by NASDAQ day trading provides only better forecasts
of the level of Nifty overnight returns but not its volatility.
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the interest in examining the short-run dynamics of stock returns and volatility between

(National Association of Securities Dealers Automated Quotations System) NASDAQ

Composite and (National Stock Exchange) NSE Nifty indices. They are:

• First, the exchanges do not have any overlapping trading hours and hence the case of
volatility transmission can be clearly examined.

• Second, the economic dailies as well as official publications like, The Economic Times

and Economic Survey have been full of stories of a newfound alliance between the NSE

and the NASDAQ. Through these news reports, market regulators, traders, and the general

investing public in India have become sensitized to market movements in the NASDAQ

Composite index and its impact on NSE Nifty.

• Finally, a quick examination of movements of these two stock markets, during the study

period, suggests that there exists a substantial degree of interdependence between

NASDAQ Composite and NSE Nifty indices.

The objective of this paper is to empirically examine the performance of (Multivariate

Generalized Autoregressive Conditional Heteroskedasticity) MGARCH model to capture the

short-run inter-linkages between the US and the Indian stock markets. We make a careful

selection of appropriate model from MGARCH family and fit the (Baba, Engle, Kraft and

Kroner) BEKK version of MGARCH model. The rich structure of MGARCH framework does
not give an edge over the forecasts compared to the simple GARCH models.

Review of Literature
A number of studies examined return and volatility spillovers across the markets. The early

studies viz., Ripley (1973); Hilliard (1979), and others report low correlations between the

markets and hence there is possibility of higher diversification benefits. This is in line with

the trade and economic linkages prevailing in those years. The links between national markets

have been of heightened interest in the wake of the October 1987 international market crash

that saw large, correlated price movements across most stock markets (Eun and Shim, 1989;
Von Furstenberg and Jeon, 1989; King and Wadhwani, 1990; Schwert, 1990; Kee-Hong Bae

and Karolyi, 1994; King et al., 1994; Longin and Solnik, 1995; Brooks and Henry, 2000; and

Tse, 2000 are few examples of such studies). These papers used monthly/weekly/daily data

and employed different methodologies like VAR, spectral analysis, simple regression, ARCH

models, etc., and reported several empirical features:

• The correlations across the stock markets are time-varying;

• Movements in major markets are closely related under volatile conditions; and

• Correlations in volatility and prices appear to be causal from the US market which
is the most influential market and none of the other market explains the US stock

market movements.

The literature concentrated mostly on well-developed equity markets in the US, Japan
and Europe, and do not pay much attention to other stock markets. Little research exists

on how Indian market moves with the major markets around the world. Sharma and Kennedy

(1977) and Rao and Naik (1990), examined linkages between developed markets and Indian
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stock market before liberalization and concluded that the Indian market is ‘independent’

of the economic phases of the developed markets. Given the present state of India, these

studies lose their relevance. With active liberalization and rapid growth of information

technology in the recent past, a number of studies started looking at response of the Indian

Stock Market to world markets viz., US, Japan and other East Asian Stock Markets (see for

example, Kumar and Mukhopadhyay, 2002; Nair and Ramanathan, 2002; Hansda and Ray,

2002; Wong et al., 2005; and Sadhan and Samir, 2005). Except Kumar and Mukhopadhyay

(2002), all other studies that used daily or lower frequency data, recognized the non-

overlapping trading hours between US and Indian markets and employed intra-day data to

examine the short-run inter-linkages. Most of the other studies concentrate on examining

the long-run relationship between India and other markets by employing the cointegration

techniques. The existing studies concluded that India is not yet integrated (and hence no

long-run relationship) with the developed markets.

Till date, in the literature, there has been no in depth analysis of interdependence between

mean and volatility structure of Indian markets and other national markets. This paper

attempts to fill that gap.

Data
As NASDAQ and NSE markets don’t have overlapping trading hours, following Hamao et al.

(1990); Lin et al. (1994); and Kee-Hong Bae and Karolyi (1994), a daily (close
t
-to-close

t-1
)

return is divided into a daytime (close
t
-to-open

t
) and an overnight (open

t
-to-close

t-1
) return for

both NSE Nifty and NASDAQ Composite indices. When there is no overlap between the

trading hours of the two markets, this decomposition of daily return into daytime and

overnight return enables one to study the influence of daytime return in one market on the

overnight return of the other. Intuitively, traders in India use any relevant information

revealed overnight in NASDAQ, in pricing their stocks as soon as the opening bell rings. So,

the decomposition of daily price changes (returns) into daytime [close
t
-to-open

t
] and

overnight [open
t
-to-close

t-1
] returns is crucial in modeling and understanding how information

is transmitted from one market to the other.

In most major stock markets, there are problems in calculating the opening prices for

the market indices due to delayed opening of individual stocks. For NSE Nifty, the first

open quote of the index is available at around 9.55 a.m. At this first open quote, as all

the 50 constituent scrips of Nifty have not been traded, so taking this value as the open

quote would be inappropriate. But usually by the official opening time of 10.00 a.m,

around 10,000 trades take place on a typical day in NSE. So, we take the open quote of

Nifty in the analysis as its value at 10.00 a.m. The National Stock Exchange Research

Initiative provides the 10.00 a.m data of NSE Nifty. Daily official open (9.30 a.m, Eastern

Standard Time (EST)) and close (4.00 p.m, EST) quotes of NASDAQ Composite index

have been downloaded from www.nasdaq.com. So, in this study, the returns are calculated

as follows:

Nifty Overnight Returns (NIFON
t
) = Log (Nifty open on day t/Nifty close on day t-1)*100

Nifty Daytime Returns (NIFD
t
) = Log (Nifty close on day t/Nifty open on day t)*100
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NASDAQ Overnight Returns (NASON
t
) = Log (NASDAQ open on day t/NASDAQ close on

day t-1)*100

NASDAQ Daytime Returns (NASD
t
) = Log (NASDAQ close on day t/NASDAQ open on

day t)*100

The hypothesis of unit root is strongly rejected for all these four return series. Therefore,
all stock return series follow a stationary process.

Methodology: GARCH Modeling

Preliminary Analysis

Table 1 presents a wide range of descriptive statistics for the returns of NASDAQ Composite

and NSE Nifty indices. The sample moments indicate that empirical distributions of returns

are all skewed and highly leptokurtic, compared to the normal distribution. This is reinforced

by the Jarque-Bera tests for normality, which are highly significant. To further analyze the

behavior of stock returns, the Ljung-Box (LB) statistic for lags 10 and 20, for returns as well
as squared returns, have been performed (Table 1). The presence of significant autocorrelations,

except for NASD return series, suggests that markets are not efficient as the past returns can

be used to predict the future returns. The presence of significant autocorrelations in the

squared series indicates that volatility is time-varying for all return series. The significant

autocorrelation among squared returns and excess kurtosis are compatible with the volatility

clustering phenomenon that has been documented for most developed stock markets,

e.g., Bollerslev et al. (1992). These features of the data lead us to consider the

NIFON NIFD NASD NASON

Mean 0.011913 –0.053361 –0.229837 0.155801

Std. Deviation 1.181816 1.706881 2.437789 1.341334

Skewness –0.855389 0.034545 0.462996 –0.415359

Kurtosis 9.259764 4.276174 6.329029 5.121630

Jarque-Bera 908.904 35.2540 257.702 109.019

Probability (0.000) (0.000) (0.000) (0.000)

LB(10) 23.967 17.641 13.242 23.307

(0.008) (0.061) (0.210) (0.010)

LB(20) 68.619 29.264 28.337 40.103

(0.000) (0.083) (0.101) (0.005)

LB2(10) 324.850 96.071 80.476 35.212

(0.000) (0.000) (0.000) (0.000)

LB2(20) 442.340 104.95 106.14 69.700

(0.000) (0.000) (0.000) (0.000)

Table 1: Descriptive Statistics of Returns
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(Generalized Autoregressive Conditional Heteroskedasticity) GARCH type models that can

accommodate time-varying and persistent behavior of volatility of returns.

We start modeling with a two-stage GARCH approach as suggested in the literature for

non-overlapping markets and then move on to a MGARCH model capturing the time-varying

correlation between the returns. The problem is also approached with a simple

(Vector Autoregressive Moving Average–Generalized Autoregressive Conditional

Heteroskedasticity) ARMA-GARCH model, where the squared returns proxy for volatility.

This simple model turns out to be as good as its more complex counterparts.

Spillover Effects with Two-Stage GARCH Model

Hamao et al. (1990); Kee-Hong Bae and Karolyi (1994); and Lin et al. (1994) used a

two-stage GARCH model for estimating the spillover effects between New York, London

and Tokyo markets. In the first stage, they estimated an appropriate MA-GARCH model for

foreign market daytime returns. In the second stage, they estimated an appropriate

MA-GARCH model for domestic overnight returns, where they included the residuals or

residual squares obtained in the first stage GARCH model as a regressor, which captured

the potential volatility spillover effect from the previously open foreign daytime returns

into the domestic overnight returns. Their main finding was that Japanese market is most

sensitive to volatility spillover effects from New York market, while the New York market

is at most moderately sensitive to volatility spillovers from Japanese market.

A two-stage GARCH model (Model 1) is first used to explore the spillover effects from

NASDAQ daytime returns to NSE Nifty overnight returns. We begin by specifying an

appropriate ARMA-GARCH-in-Mean model, for both daytime returns of NSE Nifty and

NASDAQ Composite, introduced by Engle et al. (1987) as follows:








q

j

ttmjtjitD

p

i

itD hDUMRR
1

11111
1

101  ,,,,,,,

 ttt hN ,,~/ 111 0

 
 

 
r

i

s

j

vjtjitit DUMhh
1 1

111
2
11011 ,,,,, λβεαα ...(1)

The dummy variable, DUM, accounts for multiple-day returns associated with weekends

and holidays in either market. The 1  coefficient links the conditional market volatility

to expected returns and its significance can be used to test for time-varying market risk

premia. We refer to this model as the first-stage GARCH, as the estimated residual squares

from Equation 1 will proxy for the news shocks that spillover from daytime returns of NSE

Nifty and NASDAQ Composite to the volatility of the next day NSE Nifty overnight returns.

In the second stage, we fit an appropriate ARMA-GARCH-in-Mean model for NSE Nifty

overnight returns. We allow for mean spillover effects by including previous daytime

returns of NASDAQ and Nifty in the mean equation and include the residual squares

obtained from Equation 1 for NIFD
t

and NASD
t
 in variance equation, to capture the

volatility spillover effects. That is, for NSE Nifty overnight returns, our model is given by:
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where NASDRES
t–1

 is the most recent residual estimated from the first-stage model for the

NASDAQ composite daytime return and NIFDRES
t–1

 is the same measure obtained for the

previous NSE Nifty daytime return.

A statistically significant value for ‘ ’ indicates that the conditional mean of NSE Nifty

overnight returns is influenced by the previous daytime returns of NSE Nifty (own-mean

spillovers). On the other hand, a statistically significant ‘  ’ value suggests that past
daytime returns of NASDAQ Composite affects the conditional mean of NSE Nifty overnight

returns (cross-mean spillover). Statistically significant values for ‘  ’ and ‘ ’ respectively,

indicate the influence of cross and own-volatility spillovers from previous daytime returns

of NASDAQ Composite and NSE Nifty to the NSE Nifty overnight returns.

First-Stage Results

The ARMA(1,1)-GARCH(1,1) with normal distribution as conditional error distribution fits

well for both NSE Nifty daytime returns and NASDAQ Composite daytime returns on the basis

(Contd...)

Table 2: Estimation Results and Diagnostics for Daytime Returns of NASDAQ Composite
and NSE Nifty Indices from July 1, 1999 to June 30, 2001

ttmttt DUMNASDNASD ,,,,, 111111111   

 tt hN ,, ,~ 11 0

1111
2

1111011   ttt h h ,,,,,, βεαα

tttt NIFD NIFD ,,,, 11111111   

 tt hN ,, ,~ 11 0

1111
2

1111011   ttt h h ,,,,,, 

Panel A Estimate p-value Estimate p-value

11, 0.698595 0 –0.937656 0

11, –0.777019 0 0.967435 0

m,1 –0.509481 0

01, 0.099749 0.03110 0.137085 0.08030

11, 0.092249 0.00480 0.165535 0.00210

11, 0.892866 0 0.790656 0

NASDAQ Composite Day Returns NSE Nifty Day Returns

– –

Stage 1
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of Akaiki Information Criterion (AIC). All models are estimated using the numerical maximum
likelihood procedures of Berndt et al. (1974) in RATS 5.0 package. Table 2 reports the final
estimation results for the first-stage model after dropping all the insignificant terms in the
general model considered in Equation 1, and then refitting the reduced model. Panel A reports
the coefficient estimates and Panel B presents a number of residual diagnostics. The constant
in the mean equation of both daytime returns is insignificant and hence dropped from the
model. The GARCH-in-Mean term is insignificant for both daytime returns and hence there
is no evidence of time-varying risk premia. The dummy variable for holiday and weekend
returns is significant for only NASDAQ Composite daytime returns. The estimates of GARCH
parameters, 1  and 1 , are significant and the sum of these two coefficients, measuring the
persistence of volatility, is close to unity. The portmanteau statistics (LB) evaluate the serial
correlations in the raw and squared standardized residuals of the model up to lags 10 and 20,
and find that most of the conditional dependence in the returns is modeled reasonably well.
The excess kurtosis is not a problem and there is some residual negative skewness.

Spillover Effects on NSE Nifty Overnight Returns
We next estimate the second-stage GARCH model (Equation 2) that allows both NSE Nifty
and NASDAQ Composite daytime returns and shocks to influence the conditional mean and
volatility of the NSE Nifty overnight returns. The ARMA(1,1)-GARCH(1,1) model turns out
to be appropriate in describing the NSE Nifty overnight returns. Since 0,2 , Maximum
Likelihood Estimator (MLE) of the constant in GARCH equation is negative; we constrained
it to be non-negative, yielding an estimate of zero.1 The holiday dummy is insignificant in
both mean and variance equation as is the GARCH-in-Mean coefficient, 2  The final model
for the NSE Nifty overnight returns are summarized in Panel A of Table 3 after dropping the
insignificant terms in the general model (Equation 2) and then refitting the reduced model.

The objective diagnostic tests of this final model are presented in Panel B of Table 3.

1 If we unrestrict the constant, out-of-sample variance series is negative though it is positive for observed data.

Table 2: Estimation Results and Diagnostics for Daytime Returns of NASDAQ Composite
and NSE Nifty Indices from July 1, 1999 to June 30, 2001 (...contd)

Skewness –0.13624 0.046403

Kurtosis 0.48599 4.775925

Jarque-Bera 7.08848 0.02889 71.94739 0

LB(10) 9.48810 0.30300 10.18200 0.25202

LB(20) 20.49400 0.30600 22.80710 0.19801

LB2(10) 2.15970 0.97600 13.45300 0.09701

LB2(20) 9.63060 0.94400 17.83460 0.46797

–

– –

–

Note: LB(k) is the portmanteau statistic testing joint significance of return autocorrelations up to lag k;
LB2(k) is the portmanteau statistic testing joint significance of return autocorrelations up to lag k;
DUM is a dummy variable for holiday and weekend returns;
Estimation is performed by the BHHH algorithm with robust errors option in RATS 5.0 package.

Panel B Residual Diagnostics
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The results for the conditional mean equations show statistically significant positive

mean spillover effect from the previous NASDAQ Composite daytime returns—a high

Table 3: Nifty Overnight Returns

tttttt fNASDdNIFDNIFONNIFON ,,,, 21111211202   

 tt hN ,, ,~ 22 0

002
2

1
2

11212
2

1212022   ,,,,,,, ; ttttt NASDRESNIFDREShh

Panel A Coefficients p-value

02, 0.0441 0.0008971

12, 0.3695 0.0037494

12, –0.3297 0.0216947

d 0.0756 0.0000384

f 0.0934 0.0000002

02, 9.2774e-16 0

12, 0.2076 0.0000001

12, 0.7597 0

 3.8148e-04 0.7778724

 0.0129 0

Skewness 0.1443

Kurtosis 9.3640

Jarque-Bera 953.7258 0

LB (10) 6.4103 0.779696

LB (20) 29.3061 0.081904

LB2 (10) 9.7069 0.466574

LB2(20) 15.5187 0.745996

LM (20) 0.2934 0.882290

Sign Bias 0.5433 0.587150

Negative Bias 0.4097 0.682230

Positive Bias 0.0856 0.931780

Joint Bias 0.1190 0.948920

NSE NIFTY Overnight Returns

Note: LB(k) is the portmanteau statistic testing joint significance of return autocorrelations up to lag k.
LB2(k) is the portmanteau statistic testing joint significance of return autocorrelations up to lag k.
LM(k) is the portmanteau statistic testing the presence of ARCH effects up to lag k.
Sign bias, Negative size, Positive size, and Joint bias tests are asymmetric tests developed by Engle
and Ng (1993).

Panel B  Residual Diagnostics

Stage 2
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return in the NASDAQ market is followed by high NSE Nifty overnight returns. We find

clear evidence that the most recent daytime returns of NASDAQ Composite have positive

influence on the opening price of NSE Nifty. The parameter estimates for the conditional

variance, 1,2  and 1,2 , are highly significant, indicating that the conditional variance

process of NIFON
t
 is indeed time-varying.

The stability condition for the volatility process is satisfied because the sum of the

estimated GARCH parameters is less than unity, suggesting that the conditional

variances follow a stationary process. The cross-volatility spillover effect from

NASDAQ Composite daytime returns is 0.0129 and highly significant whereas the

own-volatility spillover effect from NSE Nifty daytime returns is 3.8148e-04 and
insignificant. The model diagnostic graphs namely the residual plot and the

correlogram of residuals and residual squares are displayed in Figures 1.1A and 1.1B.

Figure 1: Model Diagnostic Plots

Figure 1.1A Residual Plot of Model 1 Figure 1.1B Residual Correlogram of Model 1

Figure 1.2A Residual Plot of Model 2 Figure 1.2B Residual Correlogram of Model 2

Figure 1.3A Residual Plot of Model 3 Figure 1.3B Residual Correlogram of Model 3
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These diagnostics show that the residuals of the models are reasonably well-behaved.

The portmanteau LB statistics in Panel B of Table 3 evaluate the serial correlations

in the raw and squared standardized residuals of the model up to lags 10 and 20 and

find that most of the conditional dependence in the return has been modeled

reasonably well. Finally, we report the sign and size bias test statistics indicating no

measurable degree of asymmetry in the residuals. On the whole the two-stage GARCH

model seems to capture the Nifty overnight return linkages with NASDAQ daytime

returns fairly well.

Multivariate GARCH Model Specification

Simultaneous modeling of returns through an MGARCH model has several advantages

over the two-stage GARCH approach though it is very intuitive in capturing the effects

of volatility spillover that has been used so far. First, MGARCH model eliminates the

two-step estimation procedure, thereby avoiding problems associated with estimated

regressors in the second stage of model building viz., the terms NASDRES2 and NIFDRES2

in Equation 2. Second, the ability of capturing cross-market spillovers increases with

MGARCH specification. Finally, the two-stage model may be viewed as a very special

case of a MGARCH model, the one with zero covariances. Thus, after fitting a more

general MGARCH model the adequacy and aptness of a two-stage model may be verified

as it is nested within this bigger model.

Before proceeding to model the variance-covariance matrix explicitly, one has to first

capture the dependency in mean returns. The mean vector of all the concerned series is

jointly modeled using a simple VAR(1) equation. However, for added leverage each mean

equation is also allowed to contain an additional MA(1) term.
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where the subscripts 1, 2 and 3 refer to NIFON, NIFD and NASD respectively. The appropriate

model will be chosen on the basis of AIC or (Schwartz Bayesian Criterion) SBC model

selection criteria. If H
t
 displays volatility-clustering phenomena then we go for MGARCH

modeling for the conditional variance-covariance matrix of trivariate return series.

Among the multivariate extensions of the GARCH model, there are three popular

multivariate GARCH models based on the way H
t
 is parameterized. Within the literature

of volatility spillovers, Diagonal VECH model proposed by Bollerslev et al. (1988), the

Constant Conditional Correlation (CCC) model of Bollerslev (1990); and BEKK model

of Engle and Kroner (1995) versions of MGARCH model are popular.

Though it is a natural multivariate generalization of GARCH, the VECH model has

drawbacks of huge number of parameters (78 parameters for a trivariate system) to be

estimated and it is hard to ensure that the covariance matrix H
t
 is positive definite. The

Diagonal VECH model proposed by Bollerslev et al. (1988) reduces the number of
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parameters to be estimated greatly at the cost of allowing and it eliminates the

possibility of examining potential interactions in the variances and covariances of the

markets. In CCC model, the conditional covariances are proportional. Though this model

is simple and most popular in literature, Longin and Solnik (1995) and Tse (2000),

showed that the stock returns across different national markets violate the constant

correlation assumption. The discussion now proceeds to BEKK-MGARCH model,

proposed by Engle and Kroner (1995) that incorporates time-varying correlations and yet

retains the appealing feature of satisfying the positive definite condition during the

optimization, and its specification is as follows:

BHBAACCH tttt 111    ...(4)

where, A and B are matrices of dimension 3x3, and C is a 3x3 upper triangular matrix.

In BEKK framework, the conditional variance-covariance of return series consists of

outer product of matrices of past return shocks. The BEKK specification offers the

advantage of estimating fewer parameters along with weak restrictions on how the

markets can interact.

Estimation Results of the MGARCH-BEKK Model

For the reasons of model tractability, we make the innocuous assumption that there is

no spillover from the Indian market to the US market (Kumar and Mukhopadhyay, 2002).

This will lead to the following parameterization of the A and B matrices:








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
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


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333231
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0

0


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





BandA

The quasi-maximum likelihood estimates of the parameters are reported in Table 4

along with the residual diagnostics. The residual diagnostic plots namely residual plot

and correlogram are presented (for brevity only NIFON equation) in Figures 1.2A and

1.2B. The LB statistics for up to 10th order serial correlation in standardized residual

squares as well as the standardized cross-residuals are given in the Panel B of Table 4.

It indicates that there is no more linear or quadratic dependence in standardized residuals

and the estimated BEKK model captures the dynamics of conditional volatilities and

covariances as well. The cross-residual autocorrelation between the series show that we

are successful in allowing for cross-correlation between the series. All these residual

diagnostics led to confirm that the fitted BEKK model is a correct specification of the

return generating process. Henceforth, this model is referred to as Model 2.

The parameter estimates of conditional variance, ii  and ii , are mostly significant,

indicating that the conditional variances for the returns are indeed time-varying, implying

that the information arrives in the market in clusters and not evenly. The stability condition

for the volatility process is satisfied because for each return series the sum of estimates of
2
ii  and 2

ii  is always less than unity, suggesting that the conditional variances follow a

stationary process.
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Table 4: Results of ARMA(1,1)-MGARCH(1,1) with BEKK Specification

ttttt NIFDNASDNIFONNIFON ,1111111   

ttttt NASDNIFONNIFDNIFD ,212212   

tttt NASD NASD ,313313   

BHBAAH tttt 111   
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333231
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







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Panel A Estimate Std. Error t-statistic Significance

1 0.07188 0.02078 3.45832 0.00054

1 0.16774 0.01557 10.77664 0

1 0.16138 0.02430 6.64030 0

2 0.43653 0.06491 6.72524 0

2 –2.74543 0.16662 –16.47688 0

2 0.42341 0.05522 7.66713 0

3 1.10687 0.57342 1.93029 0.05357

3 –1.16082 0.56968 –2.03770 0.04158

11 –0.36401 0.05191 –7.01225 0

21 0.19572 0.01764 11.09255 0

22 0.31104 0.02497 12.45886 0

31 0.08620 0.01137 7.58140 0

32 0.26035 0.03555 7.32316 0

33 0.34053 0.02573 13.23407 0

11 0.80955 0.03552 22.78972 0

12 0.24440 0.05859 4.17118 0.00003

21 0.03950 0.01228 3.21704 0.00130

22 0.87762 0.01679 52.28371 0

31 –0.02559 0.00278 –9.19131 0

32 –0.06147 0.00994 –6.18515 0

33 0.95228 0.00624 152.65517 0

(Contd...)
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Let us now concentrate on the estimated parameters of the A matrix and look for the

evidence of transmission of volatility shocks between the markets. As expected, news

generated in previous NASDAQ daytime returns and past volatility, spillover to the next
day Nifty overnight and daytime returns and its effect is more pronounced in the case of

Nifty overnight returns. Also, the news generated in the previous Nifty daytime returns and

its past volatility has significant impact on Nifty overnight returns. Further, only the past

volatility of Nifty overnight return, spillovers to the Nifty daytime return volatility but not

the news. In line with the relative sizes of the market, the MGARCH model predicts that

there is no news spillover from Nifty daytime or overnight returns to the following NASDAQ

daytime return volatility.

Spillover Effects with ARMA–GARCH Model
Multivariate GARCH techniques and their special case, the two-stage GARCH approach,

though popular in the literature of modeling spillover effects across the markets, are
inherently non-parsimonious and complex. After achieving these technically more

sophisticated results, we next seek whether a simple univariate ARMA-GARCH model can

adequately capture the dynamics of volatility transmission from NASDAQ to NSE. This

attempt is being made in spirit of the philosophy of ‘Occam’s razor’, which compels one

to choose the simplest possible model for explaining a phenomenon. In ARMA-GARCH

model, we use the squared returns as a proxy for volatility of foreign market and is appended
in the conditional variance equation of domestic market. Here, we model the NIFON

t
 returns

by allowing for possible autocorrelation from the preceding overnight returns, possible

cross-autocorrelation or influence from previous daytime returns of both NASDAQ and

Nifty, and for Monday or post-holiday effects through a dummy variable, DUM. In general

this model for NIFON
t
 can be written as:

ttt

a

i

b

j

ttjtjitit uhNASDNIFDDUMuNIFONNIFON  
 

   1
1 1

10 ...(5)

Table 4: Results of ARMA(1,1)-MGARCH(1,1) with BEKK Specification (...contd)

Estimate p-value Estimate p-value Estimate p-value

Skewness 0.06766 0.51372 0.12352 0.23818 –0.12698 0.21993

Kurtosis 4.22071 0 5.99196 0 3.60977 0.00333

Jarque-Bera 417.58280 0 211.05063 0 10.23563 0.00598

LB(10) 9.8034 0.45791 14.53920 0.14978 6.38850 0.78164

Sq.LB(10) 17.92893 0.05617 8.14930 0.61425 4.09040 0.94318

Panel B
NIFON NIFD NASD

Statistic p-value Statistic p-value Statistic p-value

Cross-LB(10) 16.83380 0.07812 11.75250 0.30196 18.02680 0.05451

F-test 4.08020 0.00022 0.16920 0.99480 0.03750 0.99998

NIFON and NIFD NIFD and NASD NASD and NASD
Panel C
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In Equation 5, the NASDAQ information is effected through the parameter  and that

of NIFTY through the parameter  . A shock (news) revealed after the close of NASDAQ

but before the opening of NIFTY market is denoted by u
t
. As it has been noticed in the

above explanation that, the volatility of NIFON
t
 series is time-varying, we extend the

above specification of NIFON
t
 in Equation 5 by modeling u

t
 as a GARCH process instead

of white noise. To capture the volatility transmission effects from the daytime returns of

both Nifty and NASDAQ, following Cheung and Ng (1992), we include their squared

returns as proxy for volatility in the GARCH specification of conditional variance of u
t
.

We also include a dummy variable for Monday or post-holiday effects, in the GARCH

specification yielding,

u
t
 ~ N (0,h

t
)

 
 

 
p

i

q

j

tttjtjitit DUMNASDNIFDhuh
1 1

2
1

2
1

2  ...(6)

The maximum likelihood estimation results of Equations 5 and 6, with the same set of

data as the two-stage GARCH model, are reported in Table 5 along with diagnostic tests.

Henceforth, this model is referred to as Model 3.

(Contd...)

Table 5: ARMA-GARCH Model

tttttt uNASDNIFDuNIFONNIFON   1111110 

 tt hNu ,~ 0

02
1

2
111

2
11   φκπβαφ ;ttttt NIFDNASDhuh

Parameter Coefficient p-value

0 0.0444 0.005131

1 0.3586 0.002098

1 –0.3168 0.010469

 0.0771 0.000039

 0.0944 0.000001

 6.0425e-18 0

 0.2082 0.010735

 0.7544 0

 0.0131 0.087150

 6.3996e-04 0.724463

Panel A Results
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The appropriate ARMA-GARCH order again turns out to be ARMA(1,1)-GARCH(1,1).

Since  , MLE of the constant in GARCH equation is negative, we constrained it to be

non-negative, yielding an estimate of zero.2 The dummy variable is insignificant in both

mean and variance equations implying that there is no systematic effect of holidays in

either mean returns or volatility. The results for the conditional mean equations show

statistically significant positive mean spillover effect from the previous NASDAQ

Composite daytime returns—a high daytime return in the NASDAQ market is followed by

a high overnight return in the NSE Nifty—as was also revealed by the two-stage approach.

The parameter estimates for the conditional variance, 1  and 1  are highly significant,

indicating that the conditional variance process of NIFON
t
 is indeed time-varying. The

stability condition for the volatility process is satisfied because the sum of the estimated

GARCH parameters is less than unity, suggesting that the conditional variances induce

a stationary process.

The cross-volatility spillover effect from NASDAQ Composite daytime returns is 0.0131

which is mildly significant, whereas the own-volatility spillover effect from NSE Nifty

daytime returns is only 6.3996e-04, which is statistically not significant. This is again in

tune with the findings of the earlier two-stage approach. The model diagnostic graphs

namely the residual plot and the correlogram of residuals and residual squares are displayed

Table 5: ARMA-GARCH Model (...contd)

Skewness 0.13783

Kurtosis 9.15399

Jarque-Bera 891.76771 0

LB(10) 6.4785 0.773587

LB(20) 29.4603 0.079084

LB2(10) 9.7704 0.460859

LB2(20) 15.8158 0.727985

LM(20) 0.3052 0.874530

Sign Bias 0.4599 0.645750

Negative Bias 0.3735 0.708940

Positive Bias 0.0386 0.969190

Joint Bias 0.0916 0.964660

Panel B Residual Diagnostics

Note: LB(k) is the portmanteau statistic testing joint significance of return autocorrelations up to lag k;
LB2(k) is the portmanteau statistic testing joint significance of return autocorrelations up to lag k;
LM(k) is the portmanteau statistic testing the presence of ARCH effects up to lag k. Sign bias,
Negative size, Positive size, and Joint bias tests are asymmetric tests developed by Engle and Ng
(1993). Estimation is performed by the BHHH algorithm with robust errors option in RATS 5.0.

2 If we unrestrict the constant, out-of-sample variance series is negative though it is positive for observed data.
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in Figure 1.3A and 1.3B. These diagnostics show that the model’s residuals are reasonably

well behaved. The portmanteau LB statistics in Panel B of Table 5 evaluate the serial

correlations in the raw and squared standardized residuals of the model up to lags 10 and 20

and find that most of the conditional dependence in the return series is captured reasonably

well. Finally, as before, the sign and size bias test statistics also do not indicate any

measurable degree of asymmetry in the residuals. On the whole the simple ARMA-GARCH

model also seems to capture the Nifty overnight return linkages with NASDAQ daytime

returns fairly well.

Model Comparison and Validation
Here, the models estimated earlier in this paper are evaluated on the basis of in-sample

and out-of-sample forecast performance. To examine the relevance of considering

NASDAQ information, we specify Domestic model (Model 4), which ignores the effect

of NASDAQ both in mean and variance equations. The Domestic model is specified as

follows:

 
 

 
p

i

q

j

ttddtdmdjtjdtiddt hNIFDDUMNIFONNIFON
1 1

110  ,,,,,

 tdt hN ,,~ 0

 
 

 
r

i

s

j

tdvdjtdjditiddtd NIFDDUMhh
1 1

2
1

2
0  ,,,,,, ...(7)

The Domestic model (Model 4) has been fitted with an appropriate ARMA-GARCH

model, where only the spillover effects from Nifty daytime returns have been included.

In-Sample Validation

Here, we consider the evaluation of competing models of international transmission of stock

returns and volatility by examining the in-sample validation of each of the models apart

from the usual AIC/SBC model selection criteria. Figure 2 plots the last 50 observed NIFON

returns in the estimation sample and the corresponding estimated NIFON returns obtained

from each model, and Figure 3 plots that of NIFON return volatility. It is very evident from

the plot that the Domestic model clearly gives the poorest fit both in mean and volatility.

Not much significant difference is found between Models 1, 2 and 3 in predicting the

observed NIFON returns.

To objectively assess the in-sample validity of the different models, we use mean

squared error for NIFON returns and MGARCH model turns out to be the best predictor of

NIFON returns. While empirically validating a model for volatility process is not

straightforward, as volatility process itself is inherently unobservable. We circumvent this

problem by using a proxy for actual realized volatility, which is the squared return. To study

the in-sample performance of different models, we check the concordance of predicted
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volatility (h
t
) of the estimated model to the volatility proxy of squared returns, 2

tr .

Specifically this amounts to regressing 2
tr on h

t
 as follows (Engle and Patton, 2000):

ttt uhbar  *2 ...(8)

A good model of h
t
 should have the properties: a = 0 and b = 1. Equation 8 is estimated

using the usual OLS procedure with White’s heteroscedasticity consistent standard errors

and the results are reported in Table 6. The in-sample volatility estimates from Models 1

and 3 appears to be close to squared returns as we are not able to reject the hypothesis, that

a and b are equal to zero and one respectively. However, the in-sample volatility estimates

from Models 2 and 4 are poor approximations to squared returns, conveying poor

performance of MGARCH model.

Figure 2: In-Sample Mean Forecast Comparison

Figure 2.1: Two-Stage Mean Forecast vs. Actual
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MSE: 1.134687775
Figure 2.3: Univariate Mean Forecast vs. Actual
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Figure 2.2: MGARCH Mean Forecast vs. Actual Figure 2.4: Domestic Mean Forecast vs. Actual
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Figure 3: In-Sample Volatility Forecast Comparison

Figure 3.1: Two-Stage Volatility Forecast vs. Actual
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MSE: 12.945267078
Figure 3.3: Univariate Volatility Forecast vs. Actual
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Figure 3.2: MGARCH Volatility Forecast vs. Actual Figure 3.4: Domestic Volatility Forecast vs. Actual
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(Contd...)

Table 6: Volatility Forecast Performance: Regression Results

h
t,i
 is the forecasted volatility as predicted by different models (i = 1,2,3,4).

2 
tr  is the actual estimate of volatility calculated as the squared daily returns.

The following regression is estimated for each model:

    ttt uhbar  log*log 2
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Table 6: Volatility Forecast Performance: Regression Results

Coefficient 

Model 

Two-Stage 0.1361672848 0.9806542665 0.0448275618 0.4766396175

(Model 1) (0.69911) (0.22196) (0.51793) (1.890404)

MGARCH –1.261420162 2.610488313 0.0774665973 0.1658272168

(Model 2) (–5.00623) (8.2717875) (0.18566) (1.8570104)

ARMA-GARCH 0.1376028391 0.9884399101 0.0436087747 0.4673380811

(Model 3) (0.70275) (0.130005) (0.50177) (1.99421)

Domestic 0.8693933120 0.3898081598 0.1429707439 0.1926732439

(Model 4) (4.82609) (12.48786) (3.59062) (4.61597)

Note: White’s (1980) heteroskedasticity consistent t-statistics are in brackets below the coefficient
estimates. * t-statistic of b is for null of b = 1.

In-Sample Volatility Evaluation Out-of-Sample Volatility Evaluation

a b* a b*

(...contd)

Out-of-Sample Validation

The only real test of the performance of a forecasting model is to see, how well it performs

in reality, and the way to do it is to use the model to forecast returns beyond the time-period

during which it was estimated and then compare the model forecasts with the real observed

returns. We report the out-of-sample forecasts of all models and compare them with the actual

realized values. We calculate multistep ahead forecasts for the next 45 days, from July 1, 2001

to August 31, 2001. Figure 4 plots the actual Nifty overnight return, mean forecast values,

TSNIFONF, MNIFON, UNINIFONF and DOMNIFONF obtained respectively from Models 1,

2, 3 and 4. It is evident that the models with NASDAQ information (Models 1, 2 and 3) clearly

outperform Model 4, and Model 3 is marginally better than Models 1 and 2 in predicting the

Figure 4: Out-of-Sample Mean Forecast Comparison

Figure 4.1: Two-Stage Mean Forecast vs. Actual
MSE: 0.12518197973

Figure 4.2: MGARCH Mean Forecast vs. Actual
MSE: 0.2554748
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Figure 5: Out-of-Sample Volatility Forecast Comparison

Figure 5.1: Two-Stage Volatility Forecast vs. Actual
MSE: 0.2434410837

Figure 5.3: Univariate Volatility Forecast vs. Actual
MSE: 0.24107989052

MSE: 0.39040654676 MSE: 0.38311095916
Figure 5.2: MGARCH Volatility Forecast vs. Actual Figure 5.4: Domestic Volatility Forecast vs. Actual
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Figure 4: Out-of-Sample Mean Forecast Comparison

Figure 4.3: Univariate Mean Forecast vs. Actual
MSE: 0.0702665644
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Figure 4.4: Domestic Mean Forecast vs. Actual
MSE: 0.3769951866
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actual Nifty overnight returns. This is further reinforced by the least mean squared error

forecast of Model 3. Figure 5 plots the out-of-sample volatility forecast errors, TSH, MH11,

UNIH and DOMH respectively from Models 1, 2, 3 and 4. In predicting the out-of-sample

volatility, it is not so clear which model performs better. From Figures 4 and 5, we conclude

that using NASDAQ information is relevant only in predicting Nifty overnight returns.

Table 7 reports the ranking of two-stage GARCH, MGARCH, ARMA-GARCH model and

Domestic model on the basis of out-of-sample MSE forecasts, regression criterion and AIC

model selection criterion. The comparison is based on the same dataset but different model

specifications. The model comparison with the Domestic model strongly supports the use

of NASDAQ information as it clearly gives the poorest fit. Between the models that use

NASDAQ information, the parsimonious model, ARMA-GARCH captures the empirical

features of data better. On the whole, Model 3 outperforms the other two models and hence

next we use Model 3 to see the importance of NASDAQ effect.

Two-Stage GARCH 4233.92 –149.03 Satisfied 0.1251820 0.2434411 2

MGARCH 4585.96 –1402.10 Not Satisfied 0.2554748 0.3904065 3

ARMA-GARCH 4221.26 –147.68 Satisfied 0.0702666 0.2410799 1

Domestic 4285.34 –181.63 Not Satisfied 0.3769952 0.3831109 4

Table 7: Model Comparison

Model AIC Log L
Regression
Criterion

MSE Out-of-Sample

RankMean
Forecast

Volatility
Forecast

Importance of NASDAQ
Finally, in order to examine the relative importance of the Nifty daytime and NASDAQ

daytime return volatilities on the Nifty overnight return volatility, the following variance

ratios, as suggested by Angela Ng (2000), are computed from the estimated ARMA-

GARCH model:

   1010
2

1
2

1 ,;,  

t

tNIFD
t

t

tNASD
t h

NIFD
VR

h

NASD
VR

κπ

The ratios NASD
tVR  and NIFD

tVR  measure the proportions of conditional variance of

NIFON
t
 accounted for by the NASDAQ and Nifty daytime return volatilities respectively.

Nifty overnight return volatility is more dependent on the NASD volatility than on the

NIFD volatility over the entire sample period. On an average, the NASD volatility accounts

for 9.51% of the Nifty overnight volatility, while the NIFD volatility captures only 0.5%.

Conclusion
The paper investigates the short-run dynamic inter-linkages between the US and Indian

stock markets, using daytime and overnight returns of NSE Nifty and NASDAQ Composite

from July 1, 1999 to June 30, 2001. GARCH methodology is extensively applied to capture
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the mechanism by which NASDAQ Composite daytime returns and volatility, affect not

only the conditional returns but also the conditional volatility of Nifty overnight returns.

The model building process starts with popular GARCH models in the literature of volatility

transmission, namely, the two-stage GARCH model and the MGARCH model. Then the

problem is approached with a simple ARMA-GARCH model where the squared returns

proxy for volatility. The results report that the simple ARMA-GARCH model performs better

than the more complex two-stage GARCH model and MGARCH model. The study also

benchmarks the fitted models with a model involving information pertaining to only the

domestic market, discarding any information revealed by the NASDAQ. The paper

concludes by quantifying the relative importance of NASD
t
 vis-à-vis NIFD

t
 in predicting

Nifty overnight return volatility.
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