
The IUP Journal of Financial Economics, Vol. VII, No. 2, 200940

A Sufficient Condition for Synchronization
Risk and Delayed Arbitrage

© 2009 IUP. All Rights Reserved.

Hideaki Sakawa* and Naoki Watanabel **

* Assistant Professor, Graduate School of Economics, Nagoya City University, Japan; and the corresponding
author. E-mail: hideaki.sakawa@gmail.com

** Research Associate, Faculty of Business Administration, Toyo University, Japan. 
E-mail: n-watanabe@osipp.osaka-u.ac.jp

Introduction
This paper attempts to analyze the sufficient condition of the model presented in Abreu and

Brunnermeier (2003). Abreu and Brunnermeier’s (2003) model assumes that arbitrageurs face

synchronization risk as defined in Abreu and Brunnermeier (2002), and delay the use of

arbitrage opportunities. Rational arbitrageurs, sequentially informed about the bubble

bursting are unable to synchronize their activities and sell at the same time. Abreu and

Brunnermeier (2003)1 concluded that the bubble persists because of the delay in arbitrage.2

A number of recent empirical and theoretical studies have examined the existence of

synchronization risk. Brunnermeier and Nagel (2004) empirically showed the existence of

synchronization risk during the US technology bubble. Sakawa and Watanabel (2006) showed

the sufficient condition for the existence of synchronization risk in a discrete time setting of

Abreu and Brunnermeier’s (2003) model.

This paper re-examines the sufficient condition for the existence of synchronization risk

in a discrete time setting. It focuses on two points. First, it finds the sufficient condition of

synchronization risk that depends on the exogenous threshold value of bubble bursting.

Second, it shows that the smaller the trading interval and number of arbitrageurs in the market,

the larger the exogenous threshold value under the sufficient condition.

This paper examines the sufficient condition for the existence of synchroniza-
tion risk as defined in Abreu and Brunnermeier (2003). Using a numerical
example, it shows that there is an upper bound to the selling threshold for
bubble bursting. This implies that the selling threshold stipulated as an
exogenous variable in Abreu and Brunnermeier (2003) should instead be
treated endogenously.

1 Chamley (2004), surveys their paper.
2 Blanchard (1979) and Blanchard and Watson (1982) analyze the mechanisms of bubble persistence and 

crashing. Their models conclude that the crash occurs stochastically under the no-arbitrage condition.
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The Basic Setting

We introduce the discrete time approximation of Abreu and Brunnermeier’s (2003) model as

in Sakawa and Watanabel (2006). We represent discrete time as nttt  ...0 10 , and the

length of one trading period as )],1[,( 1 nitt ii   . There are m risk-neutral

arbitrageurs and only one risky stock in the market (all arbitrageurs are assumed rational and

m is a natural number). Each arbitrageur has (1/m) units of stock.

At time t
b
, a positive shock occurs and a bubble emerges. Before time t

b
, the price of the

stock (
i
) was equal to its fundamental price (

i
). At time t

b
, the shock occurs and the growth

rate of fundamental price is adjusted to the safe interest rate (r). Therefore, the bubble emerges

after time })({})({ )1()1(,   bi
i

bi
ib rgt  . This model treats time t

b
 as a random

variable.

Between 1bt  and )(  bmb tt , the rational arbitrageurs become sequentially aware of

the new fundamental value at a uniform rate. In other words, it takes  to be informed of one

arbitrageur, and  = m exists. An individual arbitrageur who becomes aware of the change

in fundamentals at time t
j
, believes that t

b
is distributed between t

j – m
 and t

j – 1
. We denote this

type of arbitrageur by j. If b = j – 1, this arbitrageur is the first to realize that the fundamental

value has deviated from the stock price. If b = j – m, all other traders have already received

this information. Arbitrageur j does not know the time when the shock has occurred.

Arbitrageur j sells his stock for an arbitrage profit, after he receives the information regarding

shock. As the information regarding shock arrives at a uniform rate, the number of arbitrageurs

selling orders gradually increases, but the selling is not synchronized.

The Analysis of Abreu and Brunnermeier’s (2003) Discrete Time Model

We define the distribution function of the crash probability as )( jt j   ,3 and the transaction

cost in this market as C (<1). Arbitrageur j is faced with the problem of maximizing his

expected profit as follows:
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3 Arbitrageur j’s belief is represented by the conditional probability density function:  jt j   .

 jt j    is a monotonically increasing function of . All arbitrageurs believe that the bubble persists

when  jt j    becomes zero.
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Arbitrageur j’s expected profit is maximized when the increase in the first term is equal

to the decrease in the second term.4 The arbitrage profit is zero when the optimal strategy5

  =  1) is undertaken. As a result, the no-arbitrage condition is defined using the hazard rate:

 jth j  .
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When the arbitrageurs undertake the trigger strategy, they begin to sell out the stock after

time 11 b
t .6 We define time, bt  as the time when the selling pressure crosses
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: . Arbitrageur j continues to hold the stock until he believes that the capital

gain from holding the stock exceeds the expected loss from the crash.

In a symmetric equilibrium, the bubble bursts when arbitrageur b + m learns about the

mispricing. j = b + m is uniquely determined under the perfect Bayesian Nash equilibrium, and

we consider the prior distribution as a geometric distribution function.7 At time t
b
, arbitrageur

j’s prior distribution function ((t
b
)) and density function ( (t

b
)) are given as follows:8

10,)1()(,1)(  ppptpt b
b

b
b  ...(2)

We assume that the arbitrageur j estimates that the bursting time is bt . As the bubble

bursts at time, jt when he sells out the stock, the following equation is established:

)()()(   jbjb ...(3)

Because the bubble bursts when arbitrageur b + m learns about the mispricing in

equilibrium, the variable  that represents the bursting time becomes:  = m + . The optimal

trading time, 1jt  is the solution to Equation (1). The bubble bursts when arbitrageur  m1

sells out the stock at time,  mb  1 in equilibrium. Arbitrageur 1’s optimal strategy then

becomes:9

4 The first term is an increasing function of  while the second term is a decreasing function because the
probability of a crash is an increasing function.

5 The induction is referred to in Sakawa and Watanabel (2006).
6 Sakawa and Watanabel (2006) prove the optimality of this strategy.
7 Abreu and Brunnermeier (2003) define the prior distribution as an exponential distribution function. Sakawa

and Watanabel (2006) use the geometric distribution function with p = 1/2.

8 The posterior distribution function:  jtb  is calculated as, 
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. Arbitrageur j estimates thattt

the bubble bursts during the interval, 1  jbmj ttt after receiving information about the burst at t
j
.

Therefore,  jtb  follows the truncated distribution function with the interval, 1  jbmj ttt .
9 The Appendix discusses how to induce this equation.

1
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Therefore, the sufficient condition becomes a positive value of 1 in Equation (4).

An Examination of the Sufficient Condition

In the preceding section, we specify the arbitrageurs’ optimal strategy  1 by Equation (4),

using a geometric function. Sakawa and Watanabel (2006) showed using a numerical example,

that synchronization risk does not exist when )(  m  exceeds an upper bound. Their paper

does not analyze whether the existence of synchronization risk depends on the value of the

probability of burst (p) and the threshold (). We check the sufficient condition of the

threshold ( ) to satisfy the existence of synchronization risk for any value of the probability

of burst (p).

The sufficient condition is satisfied when  1 is positive for any/all p (0 < p < 1).

Considering the sufficient condition, the following proposition is established:

Proposition 1: The optimal   is positive for any/all p (0 < p < 1), when the following

condition is satisfied:
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Proposition 1 shows the sufficient condition for threshold ( ) for any probability of burst

(p). In Proposition 1, the left hand side of the inequality implies that exogenous selling

threshold ( ) goes beyond the selling units of stock of one arbitrageur (1/m) in equilibrium.

In other words, it implies that bubble bursts after arbitrageur,  1 bmb   learns about the mispricing

in equilibrium. The right hand side of the inequality is equivalent to 
   
    rg

g
m
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1ln1ln
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 and

shows the upper bound of the threshold (). This condition is expressed as a numerical example

in Figures 1 and 2.

Solving the relation between threshold ( ) and time interval (), the numerical values
obtained are: g = 0.05, r = 0.03, and m = 100. The horizontal axis in Figure 1 represents the
time interval () and the vertical axis represents the threshold ( ). The solid line shows
the upper bound of the threshold ( ) in Area I and dotted line shows the lower bound in
Area III. So, Area II represents the range of threshold ( ) that satisfies the sufficient condition.
Figure 1 shows that there is an upper bound of the threshold ( ) satisfying the existence of
synchronization risk and the sufficient condition is likely to be satisfied in smaller trading

time interval.

On the other hand, Figure 2 shows the relation between threshold ( ) and the number

of arbitrageurs (m). The numerical values obtained are: g = 0.05, r = 0.03, and  = 0.3.

1
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In Area II of Figure 2, we can see that the larger the number of arbitrageurs (m) in the market,

the smaller the threshold ( ).

Note: g = 0.05; r = 0.03; m = 100.

Figure 1: A Numerical Example Indicating the Relationship Between
the Length of One Trading Period () and the Threshold ()
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Note: g = 0.05; r = 0.03;  = 0.3.

Figure 2: A Numerical Example Indicating the Relationship
Between Number of Arbitrageurs (m) and the Threshold ()
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Conclusion
In this paper, two main inferences have been drawn about the sufficient condition found in

Abreu and Brunnermeier (2003). First, the sufficient condition for the existence of

synchronization risk was re-examined using numerical examples. The existence of

synchronization risk is found to depend on the value of the exogenous threshold of bubble

bursting ( ). Second, the smaller the trading interval () and number of arbitrageurs (m) in

the market, the larger the exogenous threshold value ( ) under the sufficient condition.
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Induction of Equation (4)

By substituting Equation (3) into Equation (1), the necessary conditions of the

symmetric Bayesian Nash equilibrium become:
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Appendix

By solving the above equation, arbitrageur  m1 ’s optimal strategy is obtained as

follows:
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In an endogenous crash, selling pressure crosses  (<1) at bt , and    m1*

exists. So, we solve bt  and 1b
t  as follows:
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Proof of Proposition 1: By differentiating Equation (4), the following relation between

1 and p is established:
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The optimal 1 becomes a decreasing function for any )1,0(p  under the condition,

m > 1 in the above equation.

Therefore, the optimal 1 is positive for any )1,0(p , when   011 p  exists.
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So, the positive 1 for any )1,0(p  is satisfied under the following condition:
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